Ethical Conflicts in Randomized Controlled Trials

Robert D. Truog, MD
Professor of Medical Ethics, Anaesthesia, & Pediatrics
Director of Clinical Ethics, Harvard Medical School
Executive Director, Institute for Professionalism & Ethical Practice
Senior Associate in Critical Care Medicine,
Boston Children’s Hospital
Extracorporeal Membrane Oxygenation and Conventional Medical Therapy in Neonates With Persistent Pulmonary Hypertension of the Newborn: A Prospective Randomized Study

P. Pearl O’Rourke, MD, Robert K. Crone, MD, Joseph P. Vacanti, MD, James H. Ware, PhD, Craig W. Lillehei, MD, Richard B. Parad, MD, and Michael F. Epstein, MD
Placing ECMO Cannulae at the Bedside
An RCT in the 1970s had shown ECMO not effective for ARDS in adults.

In the 1980s, Robert Bartlett used ECMO to treat newborns with PPHN.

Results were very impressive.

But, pediatricians were reluctant to adopt ECMO without convincing data from an RCT.
Questions

- Imagine you were Bob Bartlett

- Would you have sought to perform an RCT to demonstrate the superiority of ECMO to Conventional Medical Therapy (CMT)?

- Why or why not?
Extracorporeal Circulation in Neonatal Respiratory Failure: A Prospective Randomized Study

Robert H. Bartlett, MD, Dietrich W. Roloff, MD, Richard G. Cornell, PhD, Alice French Andrews, MD, Peter W. Dillon, MD, and Joseph B. Zwischenberger, MD
Bartlett: Play-the-Winner Design

10 ECMO: survived
1 CMT: died
Questions

- Imagine you were a neonatologist in Boston

- When you read this article, would you have told your hospital administrator that you needed to start an ECMO program?

- Why or why not?
“The clinical indications for this new and complex treatment remain undefined. Further randomized controlled trials… will be difficult but remain necessary.”
Extracorporeal Membrane Oxygenation and Conventional Medical Therapy in Neonates With Persistent Pulmonary Hypertension of the Newborn: A Prospective Randomized Study

P. Pearl O’Rourke, MD, Robert K. Crone, MD, Joseph P. Vacanti, MD, James H. Ware, PhD, Craig W. Lillehei, MD, Richard B. Parad, MD, and Michael F. Epstein, MD

The Harvard Neonatal ECMO Trial
Randomized newborns with PPHN to conventional therapy versus ECMO

Conventional Therapy
NICU: 7th Floor
Neonatologists
No patients had ever been offered ECMO
Anti-ECMO

ECMO
PICU: 5th Floor
Anesthesiologists & Surgeons
Already had experience with ECMO for newborns with CDH
Pro-ECMO
The Harvard Neonatal ECMO Trial: Study Design

- Eligible newborns had PPHN and a predicted mortality of 85% based upon retrospective data.

- Phase I: 50/50 randomization until there are 4 deaths in one arm.

- Phase II: Assign all patients to the more successful therapy, until there are 4 deaths in that arm or until statistical significance is achieved.

- Seek consent only from those randomized to the experimental therapy (ECMO).
\[ P(p_1 > p_2) = \frac{F_1}{F_1 + F_2 + F_3}, \]
\[ P(p_1 = p_2) = \frac{F_2}{F_1 + F_2 + F_3}, \]
\[ P(p_1 < p_2) = \frac{F_3}{F_1 + F_2 + F_3}, \]

where

\[ F_1 = \int_0^1 \int_0^{p_1} p_1^{a+2} (1 - p_1)^{b+1} p_1^6 (1 - p_1)^4 p_2^3 \, dp_1 \, dp_2 \]
\[ = \int_0^1 p_1^{a+4} (1 - p_1)^{b+3} \int_0^{p_1} p_2^3 \, dp_1 \, dp_2 \]
\[ = \frac{1}{10} \int_0^1 p_1^{a+14} (1 - p_1)^{b+3} \, dp_1 \]
\[ = \frac{1}{10} \frac{\Gamma(a + 15) \Gamma(b + 4)}{\Gamma(a + b + 19)} \]

and, similarly

\[ F_2 = \frac{\Gamma(a + 15) \Gamma(b + 4)}{\Gamma(a + b + 19)}, \]
\[ F_3 = \frac{1}{10} \left[ \frac{\Gamma(a + 6) \Gamma(b + 3)}{\Gamma(a + b + 9)} - \frac{\Gamma(a + 16) \Gamma(b + 3)}{\Gamma(a + b + 19)} \right]. \]
The Harvard Neonatal ECMO Trial: Results

<table>
<thead>
<tr>
<th>Phase</th>
<th>ECMO</th>
<th>CMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>9 s, 0 d</td>
<td>6 s, 4 d</td>
</tr>
<tr>
<td>Phase II</td>
<td>19 s, 1 d</td>
<td></td>
</tr>
</tbody>
</table>
Healer versus Investigator

The Fundamental Conflict
The fundamental dilemma

- A dilemma confronts physician-investigators…

- As physicians they are dedicated to caring for their patients…

- As investigators they are dedicated to caring for their research…

- These two commitments conflict whenever an individual physician/investigator comes face to face with an individual patient/subject.  

  Jay Katz, 1993
HIRAM S. DUDSON
1930 - 1993
Member,
Placebo Group
“Researchers must give patients stark, bold, and dramatic signs that research is different from clinical care… instead of the white coats associated with medical care, investigators could wear red ones…”

Possible solution #2: Personal Equipoise

- Requires that the investigator be personally unbiased between the treatment arms, “perfectly balanced on the edge of the sword”
- But, researchers usually “believe in” the treatments they study
- Requiring personal equipoise leaves investigators feeling either “guilty” or “cynical”
Possible solution #3: Clinical Equipoise

- Requires uncertainty within the medical community as a whole
  - “I believe that “A” is better, but if your appointment had been with my colleague down the hall, she would have recommended “B”
  - “So… would you agree to have your treatment determined by a coin flip, so that we can learn from this experience?”

- Harvard ECMO Trial
  - Likely that no single investigator was in personal equipoise
  - Does the collective uncertainty make the research ethical?

Adaptive Randomization

Balancing Conflicting Obligations
Adaptive Randomization

- Definition: Deviating from “balanced” or 50/50 randomization, with more patients assigned to the therapy that is “leading” during the trial.

- Betting on the horse who is out in front, before we know how the race will end.
Adaptive Randomization: Advantages

- Attempts to mitigate the conflict of healer versus investigator

- Attempts to minimize number of patients assigned to the less-successful therapy
  - In the Bartlett trial, 50/50 randomization was guaranteed only for the first patient
  - In the Harvard trial, 50/50 randomization was guaranteed until the 4th death in one arm
Adaptive Randomization: Disadvantages

- There must be only one outcome of interest
- The outcome must be apparent within a short period of time
- May suffer from accrual bias: volunteers may want to be recruited into the trial later
Adaptive Randomization

- In the literature, the trial was criticized from both directions
  - No patients should have been assigned to CMT
  - Not enough patients were assigned to CMT

- Perhaps this approach was a good balance
Adaptive Clinical Trials
A Partial Remedy for the Therapeutic Misconception?

William J. Meurer, MD, MS
Roger J. Lewis, MD, PhD
Donald A. Berry, PhD

Adaptive Trials in Clinical Research
Scientific and Ethical Issues to Consider

Rieke van der Graaf, PhD
Kit C. B. Roes, PhD
Johannes J. M. van Delden, MD, PhD

van der Graaf et al. JAMA 2012;307:2379
Meurer et al. JAMA 2012;307:2377
I-SPY 2: An Adaptive Breast Cancer Trial Design in the Setting of Neoadjuvant Chemotherapy

AD Barker\(^1\), CC Sigman\(^2\), GJ Kelloff\(^1\), NM Hylton\(^3\), DA Berry\(^4\) and LJ Esserman\(^3\)

I-SPY 2 (investigation of serial studies to predict your therapeutic response with imaging and molecular analysis 2) is a process targeting the rapid, focused clinical development of paired oncologic therapies and biomarkers. The framework is an adaptive phase II clinical trial design in the neoadjuvant setting for women with locally advanced breast cancer. I-SPY 2 is a collaborative effort among academic investigators, the National Cancer Institute, the US Food and Drug Administration, and the pharmaceutical and biotechnology industries under the auspices of the Foundation for the National Institutes of Health Biomarkers Consortium.

treatment options remain limited. These patients continue to represent a disproportionately large fraction of those who die of their disease. Given that the standard of care for these women increasingly includes neoadjuvant therapy prior to surgical resection, this combination of group and setting represents a unique opportunity to learn how to tailor the treatment to patients with high-risk breast cancers.

Cancer research from the past decade has shown that breast cancer is a number of heterogeneous diseases; this finding suggests that directing drugs to molecular pathways that characterize the disease in subsets of patients will improve treatment efficacy. Currently, however, most phase II and III trials of new
Randomized Consent
(Zelen Randomization)

Easing the Psychological Burdens
Conventional RCT, Without Informed Consent

Patient Eligible

RANDOMIZE

A

B
Conventional RCT, With Informed Consent

Marvin Zelen
Lemuel Shattuck Research Professor of Statistical Science and Member of the Faculty of Arts and Sciences
Department of Biostatistics

Harvard School of Public Health
Randomized Consent

Patient Eligible

Randomize

Do not seek consent

Seek consent: Will you accept B?

No → A

Yes → B
Randomized Consent

Newborn Eligible

Randomize

Do not seek consent

CMT

Seek consent: Will you accept ECMO?

No → CMT

Yes → ECMO
Imagine you were on the IRB at Boston Children’s Hospital when this study was proposed.

Would you have approved the Zelen randomization scheme?

Why or why not?
The ECMO Trial: Justifications for Randomized Consent

- Control patients were not really research subjects
- Parents of control patients were not really being offered a choice, so why subject them to stress?
- Pressure to cross-over from CMT to ECMO would have been unbearable
The NIH Office for Protection from Research Risks (OPRR) reprimanded the hospital.

The hospital IRB “made decisions that rightfully belonged to the parents. They really blew it.”
Charles McCarthy, Director of OPRR

The doctors “were doing exactly what physicians did before we had a doctrine of informed consent - making decisions for parents.”
George Annas, Boston University
Are RCTs the only way to learn?
Approaches to Learning: Ascending Order of Confidence

- Meta-analyses
- Randomized Controlled Trials
- Case / Control Observational Studies
- Databases
- Case Series with Historical Controls
- Case Series with Literature Controls
- Case Series without Controls
- Anecdotal Case Reports
Are RCTs the only way to learn?

- “The brilliant success of the RCT has now become a form of intellectual tyranny” Freireich

- “We should not proceed on the fallacious assumption that where there is no randomization, there is no truth.” Royall
Conclusions
We found little evidence that estimates of treatment effects in observational studies reported after 1984 are either consistently larger than or qualitatively different from those obtained in randomized, controlled trials. (N Engl J Med 2000;342:1878-86.)
Data published in 1988

- ECMO database of 715 newborns treated with ECMO (no controls)

- These patients had an 81% survival

- ECMO statistically superior to any other treatment with a survival rate less than 78.4%
Question

- Given all you’ve seen, are you now convinced that ECMO is superior to conventional therapy?
The existing “RCTs of neonatal ECMO... suggested reductions in mortality but were not conclusive.”

Because they “used adaptive designs, which may have introduced bias…”

Field et al. UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation. Lancet 1996;348:75-82
The UK Neonatal ECMO Trial

- 1993-1995: 185 neonates randomized to ECMO vs CMT
- Trial stopped early by DSMB,
  - ECMO survival 60/93 = 65%
  - CMT survival 38/92 = 41%, p<0.0005
- Were 22 babies unnecessarily “sacrificed”?
Conclusions

- RCTs are usually the best approach for evaluating new therapies, but…

- The conflict between clinician and investigator is profound and can never be entirely eliminated

- Adaptive randomization is one way to balance the competing obligations

- Zelen randomization reduces the psychological burdens of the investigators, but is probably unacceptable
Conclusions

“The use of statistics in medical research has been compared to a religion: it has its high priests (statisticians), supplicants (journal editors and researchers), and orthodoxy (for example, $p<.05$ is “significant”)

Benjamin Freedman
“Never, ever, think outside the box”