Returning research results in the context of evolving science

Leila Jamal ScM, PhD, CGC
Certified Genetic Counselor, NIAID
Affiliated Scholar, NIH Department of Bioethics
Genomic sequencing 2010-present
A tale of two innovations

• #1: Advances in genetic variant interpretation – a primer
 • Ethical issues + relevant guidelines

• #2: Discoveries from unbiased genomic sequencing research – early findings
 • Ethical issues

• Illustrative cases

• Implications for policy and oversight of the return of research results
*1 – Standards for variant quality control and interpretation

Next Gen Sequencing =
- Base calling
- Read alignment
- Variant calling
- Variant annotation
- **Variant interpretation**
…because the depth of coverage for an exome is not uniform, the analytical sensitivity for exome sequencing may be lower than the sensitivity for most targeted gene panels, given that a substantial number of exons in known disease-associated genes may lack sufficient coverage…
“...the ACMG strongly recommends that clinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments–approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent.”
ACMG/AMP/CAP variant interpretation guidelines (2015)

99% certain association with disease

90% certain association with disease

Everything else!

90% certain benign

99% certain benign

Richards et al. 2015, Genetics in Medicine
Types of data used

• Population data
• Segregation data
• Allelic data (phase)
• Computational data/predicted impact on protein
• "Other"
 • Specificity of gene-phenotype association
 • Extent of known benign variation in gene
 • Etc...

Application of ACMG criteria depends on what is known about a phenotype, its inheritance, penetrance, biochemistry, physiology, and epidemiology...

Strande et al. 2018, Genetics in Medicine
Since 2015

ClinGen's Critical Questions

- Is this gene associated with a disease? **Clinical Validity**
- Is this variant causative? **Pathogenicity**
- Is this information actionable? **Clinical Utility**

Building a Genomic Knowledge Base

ClinVar & Other Resources

Improved Patient Care Through Genomic Medicine
Since 2015

<table>
<thead>
<tr>
<th>Condition</th>
<th>PAH VCEP</th>
<th>PTEN VCEP</th>
<th>CDH1 VCEP</th>
<th>RASopathy VCEP</th>
<th>Hearing Loss VCEP</th>
<th>Myeloid Malignancies</th>
<th>Cardiovascular...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>275</td>
<td>111</td>
<td>121</td>
<td>285</td>
<td>107</td>
<td>52</td>
<td>101</td>
</tr>
<tr>
<td>Likely</td>
<td>8</td>
<td>7</td>
<td>20</td>
<td>127</td>
<td>20</td>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>Possibly</td>
<td>3</td>
<td>15</td>
<td>16</td>
<td>51</td>
<td>19</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td>64</td>
<td>31</td>
<td>24</td>
<td>18</td>
<td>26</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Pathogenic</td>
<td>80</td>
<td>30</td>
<td>26</td>
<td>16</td>
<td>19</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>28</td>
<td>35</td>
<td>53</td>
<td>23</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>
Since 2016

The Genome Aggregation Database (gnomAD) is a resource developed by an international coalition of investigators, with the goal of aggregating and harmonizing both exome and genome sequencing data from a wide variety of large-scale sequencing projects, and making summary data available for the wider scientific community.

Credit: Daniel MacArthur and lab@Broad Institute
Even so...

- Variant interpretation discrepancy rates (between laboratories) range from 33%-66%

- Population databases are not representative of population

- Variants of uncertain significance are detected more often in minority research participants

Amendola et al. AJHG 2016; Balmana et al. J Clin Oncol 2016; Lebo et al GIM 2018
What does all this mean?

• Reanalysis of exome data after short intervals increases diagnostic yield

• Estimates range from ~11% to ~200% increased diagnostic yield at reanalysis intervals as short as 12 months to six years

• Diagnostic gains vary by phenotype and our knowledge thereof

Liu et al. NEJM 2019; Machini et al. AJHG 2019; Baker et al. J Mol Diag 2019; Ewans et al. GIM 2018; Wright et al. 2018....etc.
What does this have to do with ethics?

- It took a lot of work to convince research institutions that return of *(high-impact, health-related)* results is the ethical thing to do *(and good for science)*

- But what if we are returning incorrect information without realizing it?

- *(Most)* researchers are not clinicians

- Researchers *(still)* have duties to minimize harms and maximize the production of knowledge
Present day challenge for researchers who return results

ASHG POSITION STATEMENT

The Responsibility to Recontact Research Participants after Reinterpretation of Genetic and Genomic Research Results

Yvonne Bombard,1,2,3,* Kyle B. Brothers,1,4 Sara Fitzgerald-Butt,5,6 Nanibaa’ A. Garrison,1,7,8 Leila Jamal,1,5,9 Cynthia A. James,5,10 Gail P. Jarvik,11,12 Jennifer B. McCormick,1,13 Tanya N. Nelson,14,15,16,17,18 Kelly E. Ormond,1,19 Heidi L. Rehm,20,21,22 Julie Richer,14,23,24 Emmanuelle Souzeau,25,26 Jason L. Vassy,20,27,28 Jennifer K. Wagner,1,29 and Howard P. Levy1,30,31

Bombard et al., AJHG, 2019
ASHG recontact guideline in a nutshell

- Recontact is resource-intensive. It is a responsibility, not a duty.
- No responsibility to actively hunt for newly-classified variants above and beyond what is being done for research.
- No responsibility after project funding has ended.
- The responsibility to recontact is stronger if there is compelling evidence for medical benefit (or harm) of NOT re-contacting.
- The degree of relationship with a study participant is key to determining the strength of a responsibility.

Bombard et al. AJHG, 2019
Not all variant reclassifications are equal

• Recontact is most important if it involves:
 • A serious condition
 • A highly penetrant variant
 • A condition for which effective intervention available (screening or treatment)
 • The risk/benefit profile of intervention is favorable
 • There is a strong knowledge base about the condition overall

• These qualifiers apply to both primary and secondary findings

• Most reclassifications do not meet this high a bar

Bombard et al. AJHG 2019
“...screening of putatively at-risk family members may be considered even if the clinical phenotype screening was negative in the individual (in whom a secondary finding was identified)....this statement recognizes the possibility that the proband may be younger than the usual age of onset of the cardiovascular phenotype”
Benefits to families?

- Considered “personal utility” at the moment – outside the scope of researcher responsibility
- Guidelines constitute a floor, not a ceiling
- Researchers can recommend *clinical* testing of at-risk relatives
At a minimum...

- Plans for recontact (including no plans) should be made clear in protocol and informed consent form

- Limitations of sequencing should be made clear in informed consent form and on test report

- Recontact/attempts to recontact should be documented

- IRBs should know to look for this in protocols

Bombard et al. AJHG 2019
A familiar theme...

![Diagram showing the relationship between benefits to individual participants and the risk of not achieving research goals.](image-url)

Courtesy Howard Levy + Yvonne Bombard
Learning as we go

Optimal Integration of Behavioral Medicine into Clinical Genetics and Genomics

William M.P. Klein, 1,* Colleen M. McBride, 2,* Caitlin G. Allen, 2 Elva M. Arredondo, 3 Cinnamon S. Bloss, 4 Kimberly A. Kaphingst, 5 Amy C. Sturm, 6 and Catharine Wang 7

Clinical genetics and genomics will exert their greatest population impact by leveraging the rich knowledge of human behavior that is central to the discipline of behavioral medicine. We contend that more concerted efforts are needed to integrate these fields synergistically, and accordingly, we consider barriers and potential actions to hasten such integration.

Klein et al. AJHG, 2019
*2 – Unbiased genomic ascertainment
In the clinical arena, we should return those variants to patients when they meet reasonable standards for proof of causality and can significantly improve the medical care of our patients.

“In the research arena, we should study incidental variants to learn what they can tell us about the full spectrum of genotypes and phenotypes. Because this research improves our knowledge of incidental variants, they can be moved onto, or perhaps in some cases off of, the lists of genes and variants known to be medically useful.”

Incidental Variants Are Critical for Genomics

Leslie G. Biesecker1*

The topic of incidental variants detected through exome and genome sequencing is controversial, both in clinical practice and in research. The arguments for and against the deliberate analysis and return of incidental variants focus on issues of clinical validity, clinical utility, autonomy, clinical and research infrastructure and costs, and, in the research arena, therapeutic misconception. These topics are briefly reviewed and an argument is made that these variants are the future of genomic medicine. As a field, we should take full advantage of all opportunities to study these variants by searching them out, returning them to patients and research participants, and studying their utility for predictive medicine.
Phenotypic expansion? Or more than one condition?

• “Multilocus variation”—pathogenic variants in two or more disease genes

• One study found a “second hit” in 6/19 of exome diagnoses previously thought to be unusual presentations of known diseases

Karaca et al. GIM 2018
“Our results show that structured clinical ontologies can be used to determine the degree of overlap between two Mendelian diseases in the same patient. Distinct disease phenotypes affect different organ systems, whereas overlapping disease phenotypes are more likely to be caused by two genes encoding proteins that interact within the same pathway.”
Reduced penetrance and variable expressivity

• Reduced penetrance
 • % of pathogenic variant carriers who develop a condition (penetrance is rarely 100%)

• Variable expressivity
 • Variable features identified in people who carry the same pathogenic variant(s) (most disorders have variable expressivity)

• Both are evidence that we don’t understand genetics as well as we would like to
NIH Clinical Center - Overlapping Worlds

Research

Clinical Care
Bottom line

• Responsible return of results requires interdisciplinary collaboration and institutional investment

• Policy development is crucial

• Scientific, medical, ethical and legal experts must learn to work together in order to get the difficult cases right

• Need to study the impacts of our policies and refine
Thank you!