Returning Research Results in Oncology: Emerging Challenges and Opportunities

Leila Jamal ScM, PhD, CGC

Genomics Education Specialist,

Cancer for Center Research, Genetics Branch

Adjunct Faculty,

NIH Department of Bioethics

Three challenges/opportunities

- 1. Re-classification of research variants that have already been returned
- Potential germline genetic findings from tumor sequencing results
 A "special" case of incidental/secondary findings
- 3. Returning results to relatives of critically ill or deceased patients

#1: Recontacting research participants when returned results are reclassified – what are researchers' responsibilities?

ASHG POSITION STATEMENT

The Responsibility to Recontact Research Participants after Reinterpretation of Genetic and Genomic Research Results

Yvonne Bombard,^{1,2,3,*} Kyle B. Brothers,^{1,4} Sara Fitzgerald-Butt,^{5,6} Nanibaa' A. Garrison,^{1,7,8} Leila Jamal,^{1,5,9} Cynthia A. James,^{5,10} Gail P. Jarvik,^{11,12} Jennifer B. McCormick,^{1,13} Tanya N. Nelson,^{14,15,16,17,18} Kelly E. Ormond,^{1,19} Heidi L. Rehm,^{20,21,22} Julie Richer,^{14,23,24} Emmanuelle Souzeau,^{25,26} Jason L. Vassy,^{20,27,28} Jennifer K. Wagner,^{1,29} and Howard P. Levy^{1,30,31}

ACMG PRACTICE GUIDELINES in Medicine

2013

ACMG clinical laboratory standards for next-generation sequencing

Heidi L. Rehm, PhD^{1,2}, Sherri J. Bale, PhD³, Pinar Bayrak-Toydemir, MD, PhD⁴, Jonathan S. Berg, MD⁵, Kerry K. Brown, PhD⁶, Joshua L. Deignan, PhD⁷, Michael J. Friez, PhD⁸, Birgit H. Funke, PhD^{1,2}, Madhuri R. Hegde, PhD⁹ and Elaine Lyon, PhD⁴; for the Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee

> "...because the depth of coverage for an exome is not uniform, the analytical sensitivity for exome sequencing may be lower than the sensitivity for most targeted gene panels, given that a substantial number of exons in known diseaseassociated genes may lack sufficient coverage..."

2015

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

"...the ACMG strongly recommends that clinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments-approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent"

ACMG/AMP/CAP variant interpretation guidelines (2015)

Types of data used

- Population data
- Segregation data
- Allelic data (phase)
- Computational data/predicted impact on protein
- "Other"
 - Specificity of gene-phenotype association
 - Extent of known benign variation in gene
 - Etc...

Strande et al. 2018, Genetics in Medicine

Application of ACMG

criteria depends on what

is known about a

phenotype, its

inheritance, penetrance,

biochemistry, physiology,

and epidemiology...

Since 2015

Since 2015

Gene Z Browse Classifications by Gene Expert Panel 🍰 Browse Classifications by Expert Condition & Browse Classifications by Condition

PAH VCEP 🔀 275	8	3	64	80	120
PTEN VCEP 🗗 111	7	15	31	30	28
CDH1 VCEP 🗗 121	20	16	24	26	35
RASopathy VCEP 🗹 265	127	51	18	16	53
Hearing Loss VCEP 🗗 107	20	19	26	19	23
Myeloid Maligna 🗹 🚺	10	5	15	8	14
Cardiovascular 🗗 101	46	1	16	18	20
.or	2 28 won	the need	2 Con	3 00 mic	1 200
Ben	LIKEN BERN .	ertain Significan	Likely Pathoge	Pathoge	
	Un				

Since 2016

genome aggregation database

Search by gene, region, or variant

Examples - Gene: PCSK9, Variant: 1-55516888-G-GA

The Genome Aggregation Database (gnomAD) is a resource developed by an international coalition of investigators, with the goal of aggregating and harmonizing both exome and genome sequencing data from a wide variety of large-scale sequencing projects, and making summary data available for the wider scientific community.

Credit: Daniel MacArthur and lab@Broad Institute

What does all this mean?

- Reanalysis of exome data after short intervals significantly increases diagnostic yield
- Estimates range from ~11% to ~200% increased diagnostic yield at reanalysis intervals as short as 12 months to six years
- Diagnostic gains vary by phenotype and our knowledge of phenotypes

Liu et al. NEJM 2019; Machini et al. AJHG 2019; Baker et al. J Mol Diag 2019; Ewans et al. GIM 2018; Wright et al. 2018....etc.

What does this have to do with ethics?

- It took a lot of work to convince research institutions that return of (highimpact, health-related) results is the ethical thing to do (and good for science)
- But what if we are returning incorrect information without realizing it?
- *(Most)* researchers are not clinicians
- Researchers (still) have duties to minimize harms and maximize the production of knowledge

ASHG recontact guideline in a nutshell

- Recontact is difficult and resource-intensive. It is a responsibility, not a duty.
- No responsibility exists after project funding has ended.
- The responsibility to recontact is stronger if there is compelling evidence for medical benefit (or harm) of NOT re-contacting.
- The degree of relationship with a study participant is key to determining the strength of a responsibility.
- Whatever you do, leave a paper trail. Documentation/communication about the limitations of research results is key.

#2: Tumor sequencing is an increasingly common method in cancer research and differs from germline sequencing in fundamental ways

Liu YL, Stadler ZK: The Future of Parallel Tumor and Germline Genetic Testing: Is There a Role for All Patients With Cancer? J Natl Compr Canc Netw 19:871-878, 2021

Pros and Cons of tumor-only vs paired tumor/normal genetic testing

Liu YL, Stadler ZK: The Future of Parallel Tumor and Germline Genetic Testing: Is There a Role for All Patients With Cancer? J Natl Compr Canc Netw 19:871-878, 2021

Tumor-normal paired testing and possible outcomes

genomics. J Pathol 244:610-615, 2018

tumor

Picture credit: FORCE, https://www.facingourrisk.org/

In tumor testing, when might we suspect a germline result?

- Well-characterized genes associated with hereditary syndromes
- If tumor is highly specific to a syndrome, it is more likely that the patient carries a germline variant in the associated gene.
 - Eg. Adrenocortical carcinoma/TP53; uveal melanoma/BAP1
- Founder mutations
 - Eg. BRCA c.68_69delAG
 - *MSH2* inversion
- Variant allele frequency (VAF) of germline variants (presumed to be heterozygous) is roughly 40%-60% but can fall outside this range.
 - NO HARD AND FAST CUTOFFS

Li et al. Genetics in Medicine, 2020

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Heqde, PhD¹², Elaine Lyon, PhD13, Elaine Spector, PhD14, Karl Voelkerding, MD13 and Heidi L. Rehm, PhD15; on behalf of the ACMG Laboratory Quality Assurance Committee

	Benign		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong
Population Data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational And Predictive Data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before <i>PM5</i> Protein length changing variant <i>PM4</i>	Same amino acid change as an established pathogenic variant <i>PS1</i>	Predicted null variant in a gene where LOF is a known mechanism of disease PV51
Functional Data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation Data	Non-segregation with disease BS4		Co-segregation with disease in multiple affected family members PP1	Increased segregation dat	a >	
De novo Data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity 8 maternity confirmed P52	e D
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in <i>trans</i> with a pathogenic variant <i>PM3</i>		
Other Database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other Data		Found in case with an alternate cause BPS	Patient's phenotype or FH highly specific for gene PP4			

SPECIAL ARTICLE

Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer

A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists

Marilyn M. Li, *† Michael Datto, *‡ Eric J. Duncavage, *[§] Shashikant Kulkarni, *[¶] Neal I. Lindeman, *^{||} Somak Roy, **** Apostolia M. Tsimberidou, *11 Cindy L. Vnencak-Jones, *11 Daynna J. Wolff, *88 Anas Younes, *19 and Marina N. Nikiforova****

Why do we care about germline variants that crop up in tumor testing?

- Your patient's treatment + management could change
 - Eg. parp inhibitors for people with *BRCA1*-related ovarian cancer
- Risk of additional cancers, cancer recurrence might be much higher than previously appreciated
- Benefits to relatives prevention and screening!
- Expand our clinical knowledge of cancer syndromes in patients who don't meet current criteria for germline testing

Implications for Informed Consent

- Patients should be informed that tumor testing could detect germline (heritable) genetic changes
- Germline results should be disclosed because they could influence treatment decisions in patient and risk management in relatives
- Current guidelines suggest that patients should be allowed to opt-out of learning germline results

#3: Returning research results to relatives – when and how?

- To what extent do researchers have responsibilities to notify at-risk relatives of critically ill or deceased cancer patients?
- What is the most efficient way of doing this in a research setting?

Case

- 6 yo w/bilateral Wilms Tumor
 - Histology: Epithelial highly anaplastic

Tumor results

SINGLE NUCL	EOTIDE VARIANTS AND INDELS	
Alteration	HGVS Nomenclature	Allele Frequency
MSH6 R1176*	NM_000179: c.3526A>T; p.Arg1176Ter	45% WGS, 52% WES, 0% RNA
TP53 R158G	NM_000546: c.472C>G; p.Arg158Gly	76% WGS, 70% WES, 62% RNA
TP53 C141F	NM_000546: c.422G>T; p.Cys141Phe	3% WGS, 6% WES, 5% RNA
TP53 R273S	NM_000546: c.817C>A; p.Arg273Ser	10% WGS, 11% WES, 24% RNA
TP53 R342P	NM_000546: c.1025G>C; p.Arg342Pro	7% WGS, 9% WES, 13% RNA
SIX1 Q177R	NM_005982: c.530A>G; p.GIn177Arg	81% WGS, 87% WES, 100% RNA
NOTE [.] The TP5.	alterations occur in a region of copy neutral LOH	see tumor ploidy

Germline results

- NGS Germline
 - MSH6 R1176* → Lynch Syndrome

SINGLE NUCL	EOTIDE VARIANTS AND INDELS	
Alteration	HGVS Nomenclature	Allele Frequency
MSH6 R1176*	NM_000179: c.3526A>T: p.Arg1176Ter	45% WGS, 52% WES, 0% RNA
TP53 R158G	NM_000546: c.472C>G; p.Arg158Gly	76% WGS, 70% WES, 62% RNA
TP53 C141F	NM_000546: c.422G>T; p.Cys141Phe	3% WGS, 6% WES, 5% RNA
TP53 R273S	NM_000546: c.817C>A; p.Arg273Ser	10% WGS, 11% WES, 24% RNA
TP53 R342P	NM_000546: c.1025G>C; p.Arg342Pro	7% WGS, 9% WES, 13% RNA
SIX1 Q177R	NM_005982: c.530A>G; p.GIn177Arg	81% WGS, 87% WES, 100% RNA

NOTE: The TP53 alterations occur in a region of copy neutral LOH, see tumor ploidy

Dominant model: Proband-directed disclosure

- Risk to relatives is disclosed to the proband; who is responsible for informing at-risk relatives
- Relatives must *voluntarily* seek follow-up risk assessment
- Numerous studies show that this is not very effective (Sermijn et al. 2004; Marks et al. 2006; Montgomery et al. 2013; Hampel 2016)
- Family letters do not increase uptake of cascade risk assessment (Dheensa et al. 2017)

Barriers to communication about disease risk

Alternative model: Direct contact w/proband opt-in or out

- Research programs contact relatives <u>directly</u> to notify them about their increased risk and test options
 - Via letters, phone, or an invitation to join a research registry
- Probands usually opt in or out of allowing relatives to be contacted
- Cost-effective; identifies more patients at-risk; access to treatment, and helps avoid unnecessary testing

SOFTWARE

Open Access

ShareDNA: a smartphone app to facilitate family communication of genetic results

Chethan Jujjavarapu¹, Jeevan Anandasakaran², Laura M. Amendola³, Cameron Haas⁴, Elizabeth Zampino², Nora B. Henrikson⁴, Gail P. Jarvik^{3,5} and Sean D. Mooney^{1*}¹⁰

In summary, a new riff on a familiar theme...

Courtesy Howard Levy + Yvonne Bombard

Thank you

leila.jamal@nih.gov

